国际互联网发展

APNIC首席科学家:New IP 提案将何去何从?

来源:

时间:2020-06-01

日前,APNIC(亚太地区互联网信息中心)首席科学家Geoff Huston发表《NEW IP和新兴通信技术》一文,分析了互联网相关的新兴技术,并对新IP提案何去何从做出判断。


Geoff Huston

  去年一个“新IP”框架被提交给在国际电联,在这个框架里重新出现了一种以网络为中心的通信架构观点设想,在设想中应用行为由网络管理的控制机制来调节。

  这不是我们第一次看到有人提议重新思考互联网技术的基本架构(例如,十几年前美国研究界就有过“Clean Slate”项目的努力),当然这也不会是最后一次。然而,这个新的IP框架在限制应用程序行为方面提出了非常多的规范,似乎忽略了过去三十年来的市场演进过程中最基本的教训:通信服务不再是计划经济,现在通信行业以传统的市场化经济的方式运作,而多样化的服务市场表现为应用行为的多样化。

  这种市场化经济的内涵最终决定了通信行业的未来,决定了所提供的服务类型,甚至决定了产生这些服务的技术,都是消费者选择的结果。消费者往往是善变的,他们容易被过往的潮流所迷惑,同时也可以是既保守又冒险的。但无论你如何看待消费市场的理智,推动这个行业发展的是消费者的钱。和其他以消费者为中心的服务市场一样,消费者想要什么,他们就能得到什么。

  然而,这不仅仅是简单的消费者偏好。这个行业的经济性质的变化,也意味着投资者和投资主体的变化,意味着经营者的变化,也意味着这个行业的集体预期以及这些预期的表述方式的变化。这真的不是由某个硬邦邦的国际委员会来主宰未来消费者的偏好。这些冠以崇高头衔的委员会,如“2030年网络技术焦点小组”,发现他们深思熟虑的预言居然一次又一次地与现实背道而驰!他们的前辈们在类似的委员会中犯着同样的错误,这些委员会中的前辈们先是错过了电脑主机,然后他们又没能看到个人电脑的革命,最后又被智能手机完全惊呆了。很显然,不管10年后的网络会是什么样子,很显然,它不会是这个2030年的焦点小组所设想的“新IP”的样子!

  我不认为自己有能力在预测未来方面做得更好,我也不会去尝试。但在这个演进的过程中,可见未来的技术萌芽现在已经浮现。我在这里想做的是描述一下我认为的最重要的技术萌芽和我选择它们的原因。

  这是我个人对未来十年内一些技术的“个人”选择,我认为它们将在互联网中发挥突出的作用。

我们能从过去学到什么?

  互联网的技术基础和整个数字通信大环境是用“分组”的概念取代了以往的“虚电路”。

  IP架构主张彻底改变以前的电话系统架构。IP体系结构倡导的不是一个带有被动边缘设备的主动时分交换网络,而是一个基本被动的网络,在网络内部的网络设备仅仅负责交换数据包。而业务响应的功能则被推送到网络边缘的设备上。网络和设备各自的角色在向互联网过渡的过程中被颠倒了。

  但改变是非常困难的,几十年来,许多与网络提供商或网络服务商有利益关系的业界人士都在努力扭转这种网络服务模式的倒置。网络运营商在处理基于分组的有效载荷的同时,努力引入基于网络的服务响应。我们看到人们努力开发基于网络的服务质量保证方法,试图在单一网络平台内为不同类别的报文流提供不同的服务响应。我认为经过大约二十年发展,我们可以把这种努力称为“大失败”。然后是MPLS中的虚拟电路仿真和最近的松散源路由(SR)方法的变种。我觉得奇怪的是,虽然通过入口流量疏导就可以以更低的成本提供流量分片的基本功能,这些方法总试图在网络中的所有活动元素之间进行协调。说句开玩笑的话,我觉得在网络中加入更多的复杂性是卖出更多更贵的路由器的一种方法。我不愿将这些技术归类为新兴技术,因为它们在许多方面似乎更像是一种倒退措施,其动机更多的是希望为分组传输这一本无特色的商品服务“增值”。这些基于网络的服务的一些努力之所以能够长期存在,是网络运营商对它们成为商品公用事业命运的一种抵抗,而不是电路交换网络架构的概念包含了任何内在价值。

  与此同时,我们在网络的其他方面也取得了一些惊人的进展。我们一直在创建广泛分布的容错系统,这些系统不依赖于集中的命令和控制。域间路由协议BGP已经默默地支持了互联网大约30年的运行,任何学习过BGP协议的人都会为它的设计留下深刻的印象。它管理的网络的复杂程度,已经比90年代初协议设计时的网络复杂度要大9个数量级。我们创造了一种新的开放的、可访问的网络。在电话网络上创造新的应用几乎是不可能的,而在互联网上,这就是一直在发生的事情。从生机勃勃的应用程序世界到最基本的数字传输,网络世界处于不断变化的状态,新技术以令人眼花缭乱的速度出现。

  在未来几年,我们可以观察到哪些新兴技术将在未来几年发挥关键作用?下面是我个人挑选的近期技术创新,我将把它们归纳为未来十年内将产生巨大影响的新兴技术。

  光学相干性技术

  几十年来,光纤领域使用的光的方法就像用手电筒,要么有光通过光纤,要么没有,这种“通断编码”(On-Off Keying,后文简称OOK)的简单光编码方式被不断完善,支持光速高达10Gbps的光纤,这在技术上并不是什么了不起的壮举,而且它遇到了开关键控(OOK)所使用的数字信号处理方式的物理性质限制。

  但光纤中仍有足够的空间处理更多的信号。现在我们转向了光学相干技术,并在这个领域释放出了第二波创新浪潮。利用光学相干技术是复用其他领域中已经彻底实践过的技术。我们利用相位振幅编码技术来调节模拟语音线路上的调制解调器,在3Khz带宽的载波上产生56Kbps的信号。类似的方法被用于无线电领域,我们现在已经看到4G系统支持高达200Mbps的数据速度。

  这种方法依赖于使用相位振幅和偏振编码,以获得接近香农极限理论上的数据容量。目前在光学市场上,每条波长上传输100Gpbs的光通信系统已经实现商品化应用,400Gbps的光通信系统也将陆续推出。在未来几年内,我们很可能会看到使用高密度相位调幅调制加上定制化的数字信号处理的Terabit级别光通信系统。与其他光通信系统一样,随着生产量的增加,我们也很可能看到这些系统的单位带宽价格会随着生产量的增加而大幅下降。在当今世界,通信容量是一种丰富的资源,而这种丰富的资源给了我们一个全新的网络架构视角。

  5G

  那么无线电通信系统怎么样?5G是新兴技术吗?

  在我看来,5G和4G没有什么区别,真正的变化是从3G升级到4G时发生的从使用PPP会话的隧道协议转向原生的IP报文转发系统。5G看起来和4G基本相同,最基本的区别在于5G里无线电频率的上移。最初的5G部署使用的是3.8Ghz载波,但现在打算向24Ghz到84Ghz之间的毫米波频段进军。这是一个喜忧参半的问题,因为更高的载波频率可以分配更大的频率块,从而增加了无线网络的承载能力,但同时,更高的频率使用更短的波长,而这些毫米波波长的短波的行为更像光而不是无线电。在更高的频率下,无线电信号很容易被建筑物、墙壁、树木和其他较大的物体所阻挡,为了弥补这一点,任何业务都需要部署大量的基站来服务相同的覆盖范围。除了炒作之外,目前还不清楚毫米波段的5G服务是否有一个合理的可持续发展的经济模式。

  基于这些原因,我将把5G放在重要的新兴技术的最后。无线电和移动服务仍将是互联网中最重要服务之一,但在这些系统的使用方式上,相对成熟的4G技术,5G并没有表现出根本性的变化。

  IPv6

  将IPv6视为2020年的新兴技术似乎很奇怪。IPv6的第一个规范RFC1883于1995年发布,这使得IPv6成为一项已有25年历史的技术。但是,在经历了多年的优柔寡断甚至断然否定之后,IPv4的枯竭问题似乎终于开始推动部署决策,目前四分之一的互联网用户设备已经开始使用IPv6,这个数字还将不可避免地上升。

  很难说让剩下四分之三的用户使用IPv6还需要多长时间,但结论看起来是不可避免的。如果“新兴”的定义是在未来几年内大规模增加使用,那么尽管IPv6已经相当古老了,但它肯定是符合这个特征的。

  我只是希望在我们最终转移到纯IPv6的服务环境之前,我们能找到一个更好的方法来解决IPv6协议扩展头的问题,尤其是与数据包碎片有关的问题。

  BBR

  Google发明的TCP控制算法BBR(Bottleneck Bandwidth and Round-trip time)是一种革命性的TCP传输控制算法,在我看来,它的重要性不亚于TCP本身。这种传输算法重新定义了终端主机、网络缓冲和传输速度之间的关系,使终端系统能够以多千兆的速度有效地消耗可用的网络容量,而不会受到设计不良的主动式数据包交换网元的阻碍。

  基于丢包的拥塞控制算法在过去曾为我们提供了很好的服务,但如今,当我们考虑到每秒数百、千兆的端到端速度时,这种保守的基于丢包的系统控制算法已经不符合实际需求。BBR实现了一个全新的流量控制和传输速度管理的视角,试图将流速稳定在与可用网络容量的公平份额相同的速度上。这是一项值得关注的技术。

  QUIC

  长期以来,应用和网络之间一直存在着紧张的关系。在TCP的端到端世界中,网络的资源是在活跃的客户端间共享的,而共享的方式是由客户端自己决定。这对网络运营商来说是它们最痛恨的事情,他们更希望主动管理网络资